Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 21, 2026
-
Free, publicly-accessible full text available May 12, 2026
-
We develop an approach to improve the learning capabilities of robotic systems by combining learned predictive models with experience-based state-action policy mappings. Predictive models provide an understanding of the task and the dynamics, while experience-based (model-free) policy mappings encode favorable actions that override planned actions. We refer to our approach of systematically combining model-based and model-free learning methods as hybrid learning. Our approach efficiently learns motor skills and improves the performance of predictive models and experience-based policies. Moreover, our approach enables policies (both model-based and model-free) to be updated using any off-policy reinforcement learning method. We derive a deterministic method of hybrid learning by optimally switching between learning modalities. We adapt our method to a stochastic variation that relaxes some of the key assumptions in the original derivation. Our deterministic and stochastic variations are tested on a variety of robot control benchmark tasks in simulation as well as a hardware manipulation task. We extend our approach for use with imitation learning methods, where experience is provided through demonstrations, and we test the expanded capability with a real-world pick-and-place task. The results show that our method is capable of improving the performance and sample efficiency of learning motor skills in a variety of experimental domains.more » « less
-
We describe a shared control methodology that can, without knowledge of the task, be used to improve a human’s control of a dynamic system, be used as a training mechanism, and be used in con- junction with Imitation Learning to generate autonomous policies that recreate novel behaviors. Our algorithm introduces autonomy that assists the human partner by enforcing safety and stability constraints. The autonomous agent has no a priori knowledge of the desired task and therefore only adds control information when there is concern for the safety of the system. We evaluate the efficacy of our approach with a human subjects study consisting of 20 participants. We find that our shared control algorithm significantly improves the rate at which users are able to successfully execute novel behaviors. Experimental results suggest that the benefits of our safety-aware shared control algorithm also extend to the human partner’s understanding of the system and their control skill. Finally, we demonstrate how a combination of our safety-aware shared control algorithm and Imitation Learning can be used to autonomously recreate the demonstrated behaviors.more » « less
An official website of the United States government

Full Text Available